A fully implicit time accurate method for hypersonic combustion: application to shock-induced combustion instability
نویسندگان
چکیده
منابع مشابه
Hypersonic Hydrogen Combustion in the Thin Viscous Shock Layer
Different models of hypersonic diffusive hydrogen combustion in a thin viscous shuck layer (TVSL) at moderate Reynolds numbers have been developed. The study is based on computations of nonequilibrium multicomponent flowfield parameters of air-hydrogen mixture in the TVSL near the blunt probe. The structure of computed combustion zones is analyzed. Under conditions of slot and uniform injection...
متن کاملApplication of neural dynamic optimization to combustion-instability control
The suppression of thermoacoustic combustion instabilities represents one of the main goals in the design of reliable high-performances combustion chambers. Unstable dynamics arise when a non-linear coupling is established between the acoustic field and the flame front generating high-amplitude and low-frequency pressure and heat release oscillations, associated with the excitation of the combu...
متن کاملSupersonic Combustion Flow Visualization at Hypersonic Flow
Currently, a new generation of scientific aerospace vehicles, using advanced hypersonic airbreathing propulsion based on supersonic combustion technology, is in development at several research centers [1]. The 14-X Brazilian Hypersonic Aerospace Vehicle, Figure 1, designed by Rolim et al. [2], at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, Figure 2, at the Ins...
متن کاملImplicit-explicit Runge-kutta Method for Combustion Simulation
New high order implicit-explicit Runge-Kutta methods have been developed and implemented into a finite volume code to solve the Navier-Stokes equations for reacting gas mixtures. The resulting nonlinear systems in each stage are solved by Newton’s method. If only the chemistry is treated implicitly, the linear systems in each Newton iteration are simple and solved directly. If in addition certa...
متن کاملCombustion Behind Shock Waves
Laminar hydrocarbon flames, which have adiabatic flame speeds on the order of a meter per second, are conventionally described by a leading convective-diffusive zone followed by an energyreleasing reactive-diffusive region. On the other hand, combustion induced by a strong shock wave is typically modeled as a convective-reactive balance with negligible diffusion, which may be called a convectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Shock Waves
سال: 1996
ISSN: 0938-1287,1432-2153
DOI: 10.1007/bf02425222